[57] Kaplan M, Tocheva EI, Briegel A, Dobro MJ, Chang Y-W, Subramanian P, et al. Loss of the Bacterial Flagellar Motor Switch Complex upon Cell Lysis. mBio. 12, e00298-21.
[56] Mandela E, Stubenrauch CJ, Ryoo D, Hwang H, Cohen EJ, Torres VL, et al. (2022) Adaptation of the periplasm to maintain spatial constraints essential for cell envelope processes and cell viability. eLife. 11, e73516.
[55] Ortega D, Beeby M. (2022) How did the archaellum get its rotation? Available from: http://spiral.imperial.ac.uk/handle/10044/1/93639
[54] Gumbart JC, Ferreira JL, Hwang H, Hazel AJ, Cooper CJ, Parks JM, et al. (2021) Lpp positions peptidoglycan at the AcrA-TolC interface in the AcrAB-TolC multidrug efflux pump. Biophysical Journal. 120, 3973–3982.
[53] Kaplan M, Chreifi G, Metskas LA, Liedtke J, Wood CR, Oikonomou CM, et al. (2021) In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography. Elife. 10, e73099.
[52] Matthews-Palmer TRS, Gonzalez-Rodriguez N, Calcraft T, Lagercrantz S, Zachs T, Yu X-J, et al. (2021) Structure of the cytoplasmic domain of SctV (SsaV) from the Salmonella SPI-2 injectisome and implications for a pH sensing mechanism. Journal of Structural Biology. , 107729.
[51] Umrekar TR, Winterborn YB, Sivabalasarma S, Brantl J, Albers S-V, Beeby M. (2021) Evolution of Archaellum Rotation Involved Invention of a Stator Complex by Duplicating and Modifying a Core Component. Frontiers in Microbiology [Internet]. 12. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2021.773386
[50] Umrekar TR, Cohen E, Drobnič T, Gonzalez-Rodriguez N, Beeby M. (2021) CryoEM of bacterial secretion systems: A primer for microbiologists. Molecular Microbiology. 115, 366–382.
[49] Sivabalasarma S, Wetzel H, Nußbaum P, van der Does C, Beeby M, Albers S-V. (2021) Analysis of Cell–Cell Bridges in Haloferax volcanii Using Electron Cryo-Tomography Reveal a Continuous Cytoplasm and S-Layer. Frontiers in Microbiology [Internet]. 11. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2020.612239
[48] Ferreira JL, Coleman I, Addison ML, Zachs T, Quigley BL, Wuichet K, et al. (2021) The “Jack-of-all-Trades” Flagellum From Salmonella and E. coli Was Horizontally Acquired From an Ancestral β-Proteobacterium. Front. Microbiol. 12, 643180.
[47] Alvira S, Watkins DW, Troman L, Allen WJ, Lorriman JS, Degliesposti G, et al. (2020) Inter-membrane association of the Sec and BAM translocons for bacterial outer-membrane biogenesis. eLife. 9, e60669.
[46] de Llano E, Miao H, Ahmadi Y, Wilson AJ, Beeby M, Viola I, et al. (2020) Adenita: interactive 3D modelling and visualization of DNA nanostructures. Nucleic Acids Res. 48, 8269–8275.
[45] Blagotinsek V, Schwan M, Steinchen W, Mrusek D, Hook JC, Rossmann F, et al. (2020) An ATP-dependent partner switch links flagellar C-ring assembly with gene expression. PNAS. 117, 20826–20835.
[44] Taylor PJ, Hagen J, Faruqu FN, Al-Jamal KT, Quigley B, Beeby M, et al. (2020) Trichinella spiralis secretes abundant unencapsulated small RNAs with potential effects on host gene expression. International Journal for Parasitology. 50, 697–705.
[43] Cohen EJ, Nakane D, Kabata Y, Hendrixson DR, Nishizaka T, Beeby M. (2020) Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella. PLOS Pathogens. 16, e1008620.
[42] Beeby M. (2020) Toward Organism-scale Structural Biology: S-layer Reined in by Bacterial LPS. Trends in Biochemical Sciences. 45, 549–551.
[41] Beeby M, Ferreira JL, Tripp P, Albers S-V, Mitchell DR. (2020) Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev. 44, 253–304.
[40] Kaplan M, Sweredoski MJ, Rodrigues JPGLM, Tocheva EI, Chang Y-W, Ortega DR, et al. (2020) Bacterial flagellar motor PL-ring disassembly subcomplexes are widespread and ancient. PNAS. 117, 8941–8947.
[39] Henderson LD, Matthews-Palmer TRS, Gulbronson CJ, Ribardo DA, Beeby M, Hendrixson DR. (2020) Diversification of Campylobacter jejuni Flagellar C-Ring Composition Impacts Its Structure and Function in Motility, Flagellar Assembly, and Cellular Processes. mBio [Internet]. 11. Available from: https://mbio.asm.org/content/11/1/e02286-19
[38] Tsai C-L, Tripp P, Sivabalasarma S, Zhang C, Rodriguez-Franco M, Wipfler RL, et al. (2020) The structure of the periplasmic FlaG–FlaF complex and its essential role for archaellar swimming motility. Nature Microbiology. 5, 216–225.
[37] Rossmann FM, Hug I, Sangermani M, Jenal U, Beeby M. (2020) In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog. Molecular Microbiology. 114, 443–453.
[36] Ahmadi Y, Nord AL, Wilson AJ, Hütter C, Schroeder F, Beeby M, et al. (2020) The Brownian and Flow-Driven Rotational Dynamics of a Multicomponent DNA Origami-Based Rotor. Small. 16, 2001855.
[35] Beeby M. (2019) Evolution of a family of molecular Rube Goldberg contraptions. PLOS Biology. 17, e3000405.
[34] Cohen EJ, Quek RT, Beeby M. (2019) A tetRA-based promoter system for the generation of conditional knockouts in Campylobacter jejuni. bioRxiv. , 616649.
[33] Nguyen LT, Oikonomou CM, Ding HJ, Kaplan M, Yao Q, Chang Y-W, et al. (2019) Simulations suggest a constrictive force is required for Gram-negative bacterial cell division. Nat Commun. 10, 1–11.
[32] Ferreira JL, Gao FZ, Rossmann FM, Nans A, Brenzinger S, Hosseini R, et al. (2019) γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLOS Biology. 17, e3000165.
[31] Thomson NM, Rossmann FM, Ferreira JL, Matthews-Palmer TR, Beeby M, Pallen MJ. (2018) Bacterial Flagellins: Does Size Matter? Trends in Microbiology. 26, 575–581.
[30] Rossmann FM, Beeby M. (2018) Insights into the evolution of bacterial flagellar motors from high-throughput in situ electron cryotomography and subtomogram averaging. Acta Cryst D. 74, 585–594.
[29] Chaban B, Coleman I, Beeby M. (2018) Evolution of higher torque in Campylobacter- type bacterial flagellar motors. Scientific Reports. 8, 97.
[28] Thomson NM, Ferreira JL, Matthews-Palmer TR, Beeby M, Pallen MJ. (2018) Giant flagellins form thick flagellar filaments in two species of marine γ-proteobacteria. PLoS ONE. 13, e0206544.
[27] Henderson LD, Beeby M. (2018) High-Throughput Electron Cryo-tomography of Protein Complexes and Their Assembly [Internet]. In: Protein Complex Assembly. Humana Press, New York, NY; 2018 [cited 2018 Apr 12]. p. 29–44.Available from: https://link.springer.com/protocol/10.1007/978-1-4939-7759-8_2
[26] Ferreira JL, Matthews-Palmer TRS, Beeby M. (2018) Electron Cryo-Tomography [Internet]. In: Cellular Imaging. Springer, Cham; 2018 [cited 2018 May 24]. p. 61–94.Available from: https://link.springer.com/chapter/10.1007/978-3-319-68997-5_3
[25] Asmar AT, Ferreira JL, Cohen EJ, Cho S-H, Beeby M, Hughes KT, et al. (2017) Communication across the bacterial cell envelope depends on the size of the periplasm. PLoS Biol. 15, e2004303.
[24] Yao Q, Jewett AI, Chang Y-W, Oikonomou CM, Beeby M, Iancu CV, et al. (2017) Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis. The EMBO Journal. , e201696235.
[23] Cohen EJ, Ferreira JL, Ladinsky MS, Beeby M, Hughes KT. (2017) Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane. Science. 356, 197–200.
[22] Haurat MF, Figueiredo AS, Hoffmann L, Li L, Herr K, J Wilson A, et al. (2017) ArnS, a kinase involved in starvation-induced archaellum expression. Mol. Microbiol. 103, 181–194.
[21] Hoffmann L, Schummer A, Reimann J, Haurat MF, Wilson AJ, Beeby M, et al. (2017) Expanding the archaellum regulatory network – the eukaryotic protein kinases ArnC and ArnD influence motility of Sulfolobus acidocaldarius. MicrobiologyOpen. 6, e00414.
[20] Taylor WR, Matthews-Palmer TRS, Beeby M. (2016) Molecular Models for the Core Components of the Flagellar Type-III Secretion Complex. PLOS ONE. 11, e0164047.
[19] Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ, Hendrixson DR. (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. PNAS. , 201518952.
[18] Beeby M. (2015) Motility in the epsilon-proteobacteria. Current Opinion in Microbiology. 28, 115–121.
[17] Chaban B, Hughes HV, Beeby M. (2015) The flagellum in bacterial pathogens: For motility and a whole lot more. Seminars in Cell & Developmental Biology. 46, 91–103.
[16] Nguyen LT, Gumbart JC, Beeby M, Jensen GJ. (2015) Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape. PNAS. 112, E3689–E3698.
[15] Müller A, Beeby M, McDowall AW, Chow J, Jensen GJ, Clemons WM. (2014) Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. Microbiologyopen. 3, 702–710.
[14] Gumbart JC, Beeby M, Jensen GJ, Roux B. (2014) Escherichia coli Peptidoglycan Structure and Mechanics as Predicted by Atomic-Scale Simulations. PLOS Comput Biol. 10, e1003475.
[13] Abrusci P, Vergara-Irigaray M, Johnson S, Beeby MD, Hendrixson DR, Roversi P, et al. (2013) Architecture of the major component of the type III secretion system export apparatus. Nat. Struct. Mol. Biol. 20, 99–104.
[12] Beeby M, Gumbart JC, Roux B, Jensen GJ. (2013) Architecture and assembly of the Gram-positive cell wall. Molecular Microbiology. 44, 664–72.
[11] Beeby M, Cho M, Stubbe J, Jensen GJ. (2012) Growth and Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha. J. Bacteriol. 194, 1092–1099.
[10] Briegel A, Beeby M, Thanbichler M, Jensen GJ. (2011) Activated chemoreceptor arrays remain intact and hexagonally packed. Mol. Microbiol. 82, 748–757.
[9] Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, et al. (2011) Structural diversity of bacterial flagellar motors. EMBO J. 30, 2972–2981.
[8] Chen S, McDowall A, Dobro MJ, Briegel A, Ladinsky M, Shi J, et al. (2010) Electron Cryotomography of Bacterial Cells. JoVE (Journal of Visualized Experiments). , e1943.
[7] Chim N, McMath LM, Beeby M, Goulding CW. (2009) Advances in Mycobacterium tuberculosis structural genomics: investigating potential chinks in the armor of a deadly pathogen. Infect Disord Drug Targets. 9, 475–492.
[6] Beeby M, Bobik TA, Yeates TO. (2009) Exploiting genomic patterns to discover new supramolecular protein assemblies. Protein Sci. 18, 69–79.
[5] Yeates TO, Beeby M. (2006) Biochemistry. Proteins in a small world. Science. 314, 1882–1883.
[4] Beeby M, O’Connor BD, Ryttersgaard C, Boutz DR, Perry LJ, Yeates TO. (2005) The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biol. 3, e309.
[3] Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, et al. (2005) Protein structures forming the shell of primitive bacterial organelles. Science. 309, 936–938.
[2] Strong M, Graeber TG, Beeby M, Pellegrini M, Thompson MJ, Yeates TO, et al. (2003) Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genome-wide functional linkage maps. Nucleic Acids Res. 31, 7099–7109.
[1] Eads JC, Beeby M, Scapin G, Yu TW, Floss HG. (1999) Crystal structure of 3-amino-5-hydroxybenzoic acid (AHBA) synthase. Biochemistry. 38, 9840–9849.